
ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 116

Performance Analysis of Various Sorting

Algorithms

Deepak Kumar Pathak
1
, Vivek Kumar Sharma

2
, Mansi Rastogi

3

Department of MCA, Future Group of Institutes, Bareilly (U.P.), India1,3

Department of C.S.E., Noida Institute of Engineering & Technology, Greater Noida (U.P.), India 2

Abstract: Sorting is an essential data structure operation, which performs easy searching, arranging and locating the
information. I have deliberated about various sorting algorithms with their performance analysis to each other. I have

also strained to show this why we have required another sorting algorithm; all sorting algorithm have some advantage

and some disadvantage. This paper also illustrations how to find the running time of an algorithm with the help of C

Sharp Programming language. I have compared five sorting algorithms (Heap Sort, Shell Sort, Bubble Sort, Merge Sort

and Quick Sort) by performance analysis their running times calculated by a Program developing in C Sharp Language.

I have analyze the performance of sorting algorithms by numerous essential factors, like complexity, memory, method,

etc.

Keywords: Sorting, Heap Sort, Shell Sort, Bubble Sort, Merge Sort, Quick Sort, Stop Watch, Performance Analysis.

I. INTRODUCTION

Algorithms have a vital and significant role in solving the

computational problems. Generally, an algorithm is a well-

formed computational procedure that takes input and

provides output. Algorithm is a sequence of steps or is a

tool to solve the computational problems. The presence of

algorithms goes way back as they were in presence even

before the presence of computers. There are numerous

techniques and methodologies which are based on

different kinds of algorithms. We talk about the sorting

algorithms Out of all problem-solving algorithms. In

sorting procedure case, it is essential to arrange a sequence
of numbers into a specified order, generally non-

decreasing. In computer science, an algorithm that

positions elements of a list into an order is known as a

sorting algorithm. Numerical order and lexicographical

order are mainly used order in sorting. For making a

practice of other algorithms (like search and merge

algorithms) sorted lists are required to work correctly and

efficiently; it is also often useful for conforming to well-

established patterns or rules of data and for generating

such output which is easy to read and recognise. There are

two conditions recruited that output essentially satisfy.

These conditions are:

1) The output is provided in a non-decreasing order i.e.

each element is greater than the earlier element in the

preferred order.

2) The output is in a permutation or reordering of the

input.

Since the origin of computing, the sorting problem has

attracted a great deal of research, worked efficiently due to

the complexity of solving it. For example, bubble sorting

algorithm was analysed as early as 1956. Although many

cogitate it a resolved problem, advantageous new sorting

algorithms are still being invented (for example, library

sort was first issued in the year 2004).

Sorting algorithms are prevailing in introductory computer
science classes, where the lavishness of algorithms for the

problem provides a moderate introduction to a variety of

principal algorithm theories, such as big O notation, data

structures, divide and conquer algorithms, randomized

algorithms, best, time-space tradeoffs, worst and lower

bounds, and average case analysis.

II. IN COMPUTER SCIENCE, SORTING

ALGORITHMS ARE NORMALLY CLASSIFIED BY

 Computational complexity (worst, average and best
behaviour) of element comparisons regarding the size

of the list. For archetypal sorting algorithms good

behaviour is O(n log n) and bad behaviour is O(n2).

 Memory usage (and use of other computer resources):

In specific, certain sorting algorithms are "in place". it

means, they need only O(1) memory beyond the items

being sorted and they don't need to create auxiliary

locations for data to be temporarily stored, as in further

sorting algorithms.

 Recursion: Some algorithms are either recursive or

non-recursive, while others may be both (e.g., merge
sort).

 Stability: Stable sorting algorithms maintain the

relative order of records with equal keys (i.e., values).

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 117

A. Aims of the Algorithms:

The algorithm had several aims:

 Speed.

 Good memory utilization. The elements that can be

sorted should closely approach the machine’s physical

limits.

 For the algorithm to be really common purpose the

only operator that will be assumed is a binary
comparison.

 To obtain good memory utilization, sorting of small

elements linked lists are avoided. Thus, the lists of

elements referred to below are implemented using

arrays, deprived of any storage overhead for pointers.

III. SUMMARIES OF SORTING ALGORITHMS

A. Shell sort[1][2]

Shell sort can be thought of as a more efficient variation of

insertion sort; it achieves this mainly by comparing items
of varying distances apart resulting in a worst run time

complexity of O (nlog2n). Shell sort is fairly straight

forward but may seem somewhat confusing at first as it

differs from other sorting algorithms in the way it selects

items to compare.

Pros:

1) Time complexity of the algorithm is O(nlogn).

2) Auxiliary Space required for the algorithm is O(1).

3) Efficient for large element list and it requires relatively

small amount of memory, extension of insertion sort.

Cons:

1) More constraints, not stable.

B. Heap sort [1][2]

Heap sort is the most efficient version of selection sort. It

also sort by determining the largest (or smallest) element

of the element list, placing that at the end (or beginning) of

the element list, then continuing with the remaining

element list, but completes this task efficiently by using a

data structure called a heap, extraordinary type of binary

tree. Once the data element list has been made into a heap,
the root node is definite to be the largest (or smallest)

element. When it is removed and positioned at the end of

the element list, the heap is repositioned so the largest

element remaining moves to the root. Finding the next

largest element takes O(log n) time by using the heap,

instead of O(n) for a linear scan as in simple selection sort.

This allows, Heap sort to run in O(nlog n) time, and this is

also the worst case complexity.

Pros:

1) Time complexity of the algorithm is O(nlog n).
2) Auxiliary Space required for the algorithm is O(1).

3) In-space and non-recursive makes it a good choice for

large data sets.

Cons:

1) Works slowly than other such DIVIDE-AND-

CONQUER sorts that also have the same O (n log n) time

complexity due to cache behaviour and other factors.

2) Unable to work when dealing with linked lists due to

non-convertibility of linked lists to heap structure.

C. Bubble Sort [1][2]
Bubble sort is a modest sorting algorithm. This algorithm

starts at the beginning of the data element set. It compares

the first two elements of data element set, and if the

second is smaller than the first, then it swaps them. It

continues doing this for each pair of adjacent elements to

the end of the data element set. It then starts again with the

first two elements, iterating until no swaps have happened

on the last pass. Average and worst-case performance is

O(n2) of this algorithm, so it is hardly used to sort huge,

unordered, data element sets. This causes larger values to

"bubble" to the end of the element list while smaller values
"sink" towards the start of the element list. Bubble sort

algorithm can be used to sort a small number of items

(where its inefficiency is not a great penalty). Bubble sort

may be efficiently used on an element list that is already

sorted except for a very small number of elements list. For

example, if only one element is unordered, bubble sort will

take only 2n time. If two elements are unordered, bubble

sort will take only at most 3n time. Bubble sort average

and worst case are both O(n²).

Pros:

1) Simplicity and ease of implementation.
2) Auxiliary Space used is O(1).

Cons:

1) Very inefficient. Average complexity is O(n2) and Best

case complexity is O(n).

D. Merge Sort: [1][2]

Merge sort takes advantage of the ease of merging already

sorted element lists into a new sorted element list. It starts

by comparing every two elements and swapping them if

the first should come after second. It then merges each of
the resulting element lists of two into element lists of four,

and then merges those element lists of four, and so on;

until at last two element lists are merged into the final

sorted element list. Of the algorithms defined here, this is

the first that scales well to huge element lists, because its

worst running time is O (n log n).

Pros:

1) Marginally faster than the heap sort for larger sets.

2) Merge sort is often the best choice for sorting a linked

list because the slow random-access performance of a

linked list makes some other algorithms (such as quick
sort) perform poorly, and others (such as heap sort)

completely impossible.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 118

Cons:

1) At least twice the memory requirements of the other

sorts because it is recursive. This is major cause for

concern as its space complexity is very high. It needs

about a Θ(n) auxiliary space for its working.

2) Function overhead calls (2n-1) are much more than

those for quick sort (n). This causes it to take more time

marginally to sort the input data.

E. Quick Sort [1][2]

Quick Sort is a divide and conquer algorithm which relies

on a partition operation: to partition an array an element

called a pivot element is selected. All elements are moved

before pivot elements which are smaller than pivot

element and all greater elements are moved after it. This

process can be done efficiently in linear time and in-place.

The lesser and greater sub-lists of elements are then

recursively sorted. Efficient implementations of quick sort

(with in-place partitioning) are typically unstable sorts and
to some extent complex, but are among the fastest sorting

algorithms in practice. Together with its modest O(log n)

space usage, quick sort is one of the most standard sorting

algorithms and is available in many standard programming

libraries. The most complex issue in quick sort is choosing

a good pivot element; consistently poor choices of pivots

can result in drastically slower O(n²) performance, if at

every single step the median is elected as the pivot

element then the algorithm works in O(n log n). Finding

the median however, is an O(n) operation on unsorted lists

and therefore exacts its own penalty with sorting.

Pros:

1) One advantage of the parallel quick sort over other

parallel sort algorithms is that no synchronization is

compulsory. A new thread is started as quickly as a sub-

list is available for it to work on and it does not

communicate with other threads. When all threads

complete, the sort is complete.

2) All comparisons are being done with a single pivot

element value, which can be stored in a register.

3) The list is being traversed serially, which produces very

good locality of reference and cache behaviour for arrays.

Cons:

1) Auxiliary space used in the average case for

implementing recursive task calls is O(log n) and hence

proves to be a bit space costly, mainly when it comes to

large data element sets.

2) Its worst case time complexity is O(n2) which can

prove very fatal for large data sets.

TABLE I: VARIOUS SORTING ALGORITHM

Sort Best Average Worst Memory Stable

Shell n nlog2n nlog2n nk+np No

Heap n log n n log n n log n nk+np No

Bubbl
e

n n2 n2 nk+np Yes

Merg

e
n log n n log n n log n

nk+np+sta

ck
Yes

Quick n log n n log n n2
nk+np+sta

ck
No

IV. COMPARISON BY USING CODE WRITTEN IN

C # LANGUAGE

Now, we will determine the efficiency of the various

sorting algorithms according to the time by using

randomized trails. The build environment will be

constructed using the C# language in Asp.Net Framework.

We will discuss and implement numerous sorting

algorithms such as bubble, heap sort and shell sort and will

also take account of complexity sort such as quick sort and

merge sort. We will represent these sorting algorithms as

an approach to sort an integers array and execute random
trails of length.

To examine, we create a namespace called

“SortAlgorithms” which contains one class

“SortAlgoComparison”. This class contains numerous

Functions for Shell Sort, Heap Sort, Bubble Sort, Merge

Sort and Quick Sort. In Main () function we will be using

Random Number Generator for generating the number of

elements for arrays. We will be using the StopWatch[3]

Class of the System.Diagnostics Namespace which will

help us to find the running time of the algorithm in

microseconds. To set array size using integer type variable

“N” for following arrays-

int N = 10000; // Set the value here if you want to run the

code for 10,100,1000,10000 or 100000 elements

int[] arr_shell = new int[N];

int[] arr_heap = new int[N];

int[] arr_bubble = new int[N];

int[] arr_merge = new int[N];
int[] arr_quick = new int[N];

int[] aux = new int[N];

These arrays fill by using “Random” class in following

way-

Random rn = new Random();

for (int i = 0; i < N; i++)

{

 arr_shell[i] = rn.Next(1, 10000);

 arr_heap[i] = rn.Next(1, 10000);

 arr_bubble[i] = rn.Next(1, 10000);

 arr_merge[i] = rn.Next(1, 10000);
 arr_quick[i] = rn.Next(1, 10000);

}

Similarly “SW1” is object of stopwatch to count CPU

cycle and “TS” object which calculate sorting execution

time in microseconds of all algorithm in following

manner[3][4]-

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 119

System.Diagnostics.Stopwatch SW1 = new

System.Diagnostics.Stopwatch();

 SW1.Start();

 ShellSort(arr_shell);

 SW1.Stop();

 long TS = SW1.ElapsedTicks/

(System.Diagnostics.Stopwatch.Frequency/(1000L *

1000L));

We will be calling each sorting function to discover the

running time of that sorting algorithm so that we can

compare the running time of the algorithms. We passed a

different number of elements (N=10, 100, 1000, 10000,

100000) to the sorting Functions. We executed the

program five times for each value of N (i.e. 10 or 100 or

1000, 10000 or 100000) and tried to discover the running

time of each sorting algorithms. Table II shows the

running time of each algorithm for first, second, third,

fourth and Fifth execution. We have also calculated the
average running time (In Microseconds) based upon the

running time. We have used five charts for comparing the

sorting algorithms.

TABLE II: RUNNING TIME OF VARIOUS SORTING ALGORITHM

First Run(Time in Microseconds)

N Shell Heap Bubble Merge Quick

10 418 714 247 583 358

100 442 714 403 600 400

1000 723 1033 8828 1061 873

10000 5184 4785 850375 5979 5488

100000 55193 52014 82920053 62290 59764

Second Run(Time in Microseconds)

N Shell Heap Bubble Merge Quick

10 413 720 285 584 376

100 421 697 324 564 438

1000 725 1135 9428 1049 738

10000 4786 4865 841813 5819 5406

100000 54669 52809 83145365 62204 59440

Third Run(Time in Microseconds)

N Shell Heap Bubble Merge Quick

10 400 749 256 565 474

100 414 714 378 571 372

1000 698 1025 8574 1033 789

10000 6058 4870 634211 5875 5254

100000 54971 52550 83115290 63525 56951

Forth Run(Time in Microseconds)

N Shell Heap Bubble Merge Quick

10 464 1045 311 583 383

100 444 701 362 652 408

1000 699 1279 9101 1115 783

10000 5850 4840 849089 5804 5573

100000 63210 53626 83243948 62203 61587

Fifth Run(Time in Microseconds)

N Shell Heap Bubble Merge Quick

10 422 768 263 568 383

100 432 799 436 693 493

1000 767 1009 9149 1097 792

10000 4865 6926 838649 5826 5464

100000 63169 70540 83159449 62313 59937

Average Run(Time in Microseconds)

N Shell Heap Bubble Merge Quick

10 423.4 799.2 272.4 576.6 394.8

100 430.6 725 380.6 616 422.2

1000 722.4 1096.2 9016 1071 795

10000 5348.6 5257.2 802827.4 5860.6 5437

100000 58242.4 56307.8 83116821 62507 59535.8

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 120

First Chart (fig.1) compares all sorting algorithms for the

small values of N=10. Second Chart (fig.2) compares all

sorting algorithms for the values of N=100. Third Chart

(fig.3) compares all sorting algorithms for the large values

of N=1000. Chart (fig.4) compares all sorting algorithms

for the large values of N=10000 and Chart (fig.5)

compares all sorting algorithms for the large values of

N=100000. First Chart (fig.1) compares all the sorting
algorithms for the small values of N=10. For N=10,

Bubble sort taking minimum execution time.

Fig. 1 running time of sorting Algorithms in microsecond

for N=10

Second Chart (fig.2) compares all the sorting algorithms

for the medium values of N=100. For N=100, Bubble sort

taking minimum execution time.

Fig. 2 running time of sorting Algorithms in microsecond

for N=100

Third Chart (fig.3) compares all the sorting algorithms for

the large values of N=1000. For N=1000, Shell sort taking
minimum execution time.

Fig. 3 running time of sorting Algorithms in microsecond

for N=1000

Forth Chart (fig.4) compares all the sorting algorithms for

the large values of N=10000. For N=10000, Heap sort

taking minimum execution time.

Fig. 4 running time of sorting Algorithms in microsecond

for N=10000

Fifth Chart (fig.5) compares all the sorting algorithms for

the large values of N=100000. For N=100000, Heap sort

taking minimum execution time.

Fig. 5 running time of sorting Algorithms in microsecond

for N=100000

For N=1000, 10000 and 100000, again Bubble Sort is

taking the Maximum Time as shown in above figures. We

can observe from the figures that Shell Sort and Quick

Sort are taking the least time in all the cases but space

requirement for a shell is less then Quick Short. So we can

say that from all the sorting algorithms we taken for

performance analysis, Shell Sort is most efficient.

V. CONCLUSIONS

In this study, we have studied about numerous sorting

algorithms and their assessment. Every sorting algorithm

has various advantage and disadvantage. To determine the

running time of each sorting algorithm we used a Program

for comparing the running time (in Microseconds). After

running the similar program on five different executions

(for each different value of N=10, 100, 1000, 10000,
100000), we calculated the average running time for each

algorithm and then presented the result with the help of a

chart. From the chart, We can conclude that Shell Sort is

the most efficient algorithm.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 121

REFERENCES

[1]. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

“Introduction to algorithms”, MIT Press, Cambridge, MA, 2nd

edition, 2001.

[2]. Knuth, The art of computer programming sorting and searching, 2nd

edition, Addison-wesley, 1998.

[3]. http://www.dotnetperls.com/stopwatch accessed on 15 Jan, 2014.

[4]. http://www.c-sharpcorner.com/uploadfile/9f4ff8/use-of-stopwatch-

class- in-c-sharp/ accessed on 15 Jan, 2014.

[5]. http://en.algoritmy.net/category/39386/Sorting-algorithms accessed

on 20 Jan, 2014.

APPENDIX

/* Program that will show the use of Sorting Algorithms

(Heap Sort, Shell Sort, Bubble Sort, Merge Sort and Quick
Sort) and compares the running time of these algorithms

with the help of StopWatch Class of System.Diagnostics

NameSpace*/

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace SortAlgorithms

{

 class SortAlgoComparison
 {

 static void Main(string[] args)

 {

 int N = 10000; // Set the value here if you want to

run the code for 10,100,1000 or 10000 elements

 int[] arr_shell = new int[N];

 int[] arr_heap = new int[N];

 int[] arr_bubble = new int[N];

 int[] arr_merge = new int[N];

 int[] arr_quick = new int[N];

 int[] aux = new int[N];

 Random rn = new Random();

 for (int i = 0; i < N; i++)

 {

 arr_shell[i] = rn.Next(1, 10000);

 arr_heap[i] = rn.Next(1, 10000);

 arr_bubble[i] = rn.Next(1, 10000);

 arr_merge[i] = rn.Next(1, 10000);

 arr_quick[i] = rn.Next(1, 10000);

 }

 /***********SHELL SORT
CALL**************/

 System.Diagnostics.Stopwatch SW1 = new

System.Diagnostics.Stopwatch();

 SW1.Start();

 ShellSort(arr_shell);

 SW1.Stop();

 long timeselection = SW1.ElapsedTicks /

(System.Diagnostics.Stopwatch.Frequency / (1000L *

1000L));

 Console.WriteLine("time taken by shell sort is:{0}

microseconds", timeselection);

 /************ HEAP SORT CALL

*************/
 System.Diagnostics.Stopwatch SW2 = new

System.Diagnostics.Stopwatch();

 SW2.Start();

 Heapsort(arr_heap);

 SW2.Stop();

 long timeinsertion = SW2.ElapsedTicks /

(System.Diagnostics.Stopwatch.Frequency / (1000L *

1000L));

 Console.WriteLine("time taken by heap sort is:{0}

microseconds", timeinsertion);

 /********** BUBBLE SORT CALL

************/

 System.Diagnostics.Stopwatch SW3 = new

System.Diagnostics.Stopwatch();

 SW3.Start();

 BubbleSort(arr_bubble);

 SW3.Stop();

 long timebubble = SW3.ElapsedTicks /

(System.Diagnostics.Stopwatch.Frequency / (1000L *

1000L));

 Console.WriteLine("time taken by bubble sort

is:{0} microseconds", timebubble);

 /********* MEAGE SORT CALL ***********/

 System.Diagnostics.Stopwatch SW4 = new

System.Diagnostics.Stopwatch();

 SW4.Start();

 MergeSort(arr_merge, aux, 0, arr_merge.Length -

1);

 SW4.Stop(); long timemerge = SW4.ElapsedTicks

/ (System.Diagnostics.Stopwatch.Frequency / (1000L *

1000L));

 Console.WriteLine("time taken by merge sort
is:{0} microseconds", timemerge);

 /*********** QUICK SORT CALL

*************/

 System.Diagnostics.Stopwatch SW5 = new

System.Diagnostics.Stopwatch();

 SW5.Start();

 QuickSort(arr_quick, 0, arr_quick.Length - 1);

 SW5.Stop();

 long timequick = SW5.ElapsedTicks /

(System.Diagnostics.Stopwatch.Frequency / (1000L *

1000L));
 Console.WriteLine("time taken by quick sort

is:{0} microseconds", timequick);

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 122

 Console.ReadKey();

 }

 /*** SHELL SORT DEFINITION START ***/

 public static int[] ShellSort(int[] array)

 {

 int gap = array.Length / 2;
 while (gap > 0)

 {

 for (int i = 0; i < array.Length - gap; i++)

//modified insertion sort

 {

 int j = i + gap;

 int tmp = array[j];

 while (j >= gap && tmp > array[j - gap])

 {

 array[j] = array[j - gap];

 j -= gap;
 }

 array[j] = tmp;

 }

 if (gap == 2) //change the gap size

 {

 gap = 1;

 }

 else

 {

 gap = (int)(gap / 2.2);

 }

 }
 return array;

 }

 /****** SHELL SORT DEFINITION END *****/

 /******HEAP SORT DEFINITION START ******/

 public static void Heapsort(int[] array)

 {

 for (int i = array.Length / 2 - 1; i >= 0; i--)

 {

 RepairTop(array, array.Length - 1, i);
 }

 for (int i = array.Length - 1; i > 0; i--)

 {

 HeapSwap(array, 0, i);

 RepairTop(array, i - 1, 0);

 }

 }

 /* MOVE THE TOP OF THE HEAP TO THE

CORRECT PLACE */

 private static void RepairTop(int[] array, int

bottom, int topIndex)

 {
 int tmp = array[topIndex];

 int next = topIndex * 2 + 1;

 if (next < bottom && array[next] > array[next +

1]) next++;

 while (next <= bottom && tmp > array[next])

 {

 array[topIndex] = array[next];

 topIndex = next;

 next = next * 2 + 1;
 if (next < bottom && array[next] > array[next

+ 1]) next++;

 }

 array[topIndex] = tmp;

 }

 /*** SWAPS TWO ELEMENTS OF THE HEAP

***/

 private static void HeapSwap(int[] array, int left,

int right)

 {
 int tmp = array[right];

 array[right] = array[left];

 array[left] = tmp;

 }

 /******* HEAP SORT DEFINITION END

*******/

 /***** BUBBLE SORT DEFINITION START

******/

 static void BubbleSort(int[] arr)

 {
 for (int i = 0; i < arr.Length - 1; i++)

 {

 for (int j = 0; j < arr.Length - i - 1; j++)

 {

 if (arr[j + 1] < arr[j])

 {

 int tmp = arr[j + 1];

 arr[j + 1] = arr[j];

 arr[j] = tmp;

 }

 }
 }

 }

 /******* BUBBLE SORT DEFINITION END

*******/

 /******MERGE SORT DEFINITION START

*******/

 public static void MergeSort(int[] array, int[] aux, int

left, int right)

 {

 if (left == right) return;
 int middleIndex = (left + right) / 2;

 MergeSort(array, aux, left, middleIndex);

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICACTRP 2017

International Conference on Advances in Computational Techniques and Research Practices

Noida Institute of Engineering & Technology, Greater Noida

Vol. 6, Special Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE 123

 MergeSort(array, aux, middleIndex + 1, right);

 Merge(array, aux, left, right);

 for (int i = left; i <= right; i++)

 {

 array[i] = aux[i];

 }

 }

 private static void Merge(int[] array, int[] aux, int

left, int right)

 {

 int middleIndex = (left + right) / 2;

 int leftIndex = left;

 int rightIndex = middleIndex + 1;

 int auxIndex = left;

 while (leftIndex <= middleIndex && rightIndex

<= right)

 {
 if (array[leftIndex] >= array[rightIndex])

 {

 aux[auxIndex] = array[leftIndex++];

 }

 else

 {

 aux[auxIndex] = array[rightIndex++];

 }

 auxIndex++;

 }

 while (leftIndex <= middleIndex)

 {
 aux[auxIndex] = array[leftIndex++];

 auxIndex++;

 }

 while (rightIndex <= right)

 {

 aux[auxIndex] = array[rightIndex++];

 auxIndex++;

 }

 }

 /******* MERGE SORT DEFINITION END

*******/

 /****** QUICK SORT DEFINITION START

*******/

 public static void QuickSort(int[] array, int left, int

right)

 {

 if (left < right)

 {

 int limit = left;

 for (int i = left + 1; i < right; i++)

 {
 if (array[i] > array[left])

 {

 QuickSwap(array, i, ++limit);

 }

 }

 QuickSwap(array, left, limit);

 QuickSort(array, left, limit);

 QuickSort(array, limit + 1, right);

 }

 }

 private static void QuickSwap(int[] array, int left, int

right)

 {

 int tmp = array[right];

 array[right] = array[left];

 array[left] = tmp;

 }

 /***** QUCIK SORT DEFINITION END *****/

 }
}

BIOGRAPHY

Mr. Deepak Kumar Pathak is working

as an Assistant Professor in Future Group

of Institutes, Bareilly, U.P. His academic

qualification is M.Tech.(C.S.E.), MCA.

He has more than three year experience in

teaching field. His research areas are

Operating System, Data Mining.

Mr. Vivek Kumar Sharma is working as

an Assistant Professor in Department of

Computer Science & Engineering,

N.I.E.T. Greater Noida. His academic

qualification is M. Tech. (C.S.E.), B.Tech.

(C.S.E.). He has five year experience in

teaching field. His research areas are

Parallel Computing, Software

Engineering.

Ms. Mansi Rastogi is working as an
Assistant Professor in Future Group of

Institutions Bareilly, U.P. His academic

qualification is MCA. She has two year

experience in teaching field. His research

areas are Data Base, Software

Engineering.

